moocore.eafdiff#
- moocore.eafdiff(x, y, /, *, intervals=None, maximise=False, rectangles=False)[source]#
Compute empirical attainment function (EAF) differences.
Calculate the differences between the empirical attainment functions of two data sets.
- Parameters:
x (
ArrayLike
) – Numpy matrices corresponding to the input data of left and right sides, respectively. Each data frame has at least three columns, the third one being the set of each point. See alsoread_datasets()
.y (
ArrayLike
) – Numpy matrices corresponding to the input data of left and right sides, respectively. Each data frame has at least three columns, the third one being the set of each point. See alsoread_datasets()
.intervals (
int
|None
, default:None
) – The absolute range of the differences \([0, 1]\) is partitioned into the number of intervals provided.maximise (
bool
orlist
ofbool
) – Whether the objectives must be maximised instead of minimised. Either a single boolean value that applies to all objectives or a list of booleans, with one value per objective. Also accepts a 1D numpy array with value 0/1 for each objective.rectangles (
bool
, default:False
) – IfTrue
, the output is in the form of rectangles of the same color.
- Returns:
ndarray
– Withrectangles=False
, a matrix with three columns, The first two columns describe the points where there is a transition in the value of the EAF differences. Withrectangles=True
, a matrix with five columns, where the first 4 columns give the coordinates of two corners of each rectangle. In both cases, the last column gives the difference in terms of sets inx
minus sets iny
that attain each point (i.e., negative values are differences in favoury
).
See also
moocore.read_datasets
,mooplot.eafdiffplot
Examples
>>> from io import StringIO >>> A1 = moocore.read_datasets( ... StringIO(''' ... 3 2 ... 2 3 ... ... 2.5 1 ... 1 2 ... ... 1 2''') ... ) >>> A2 = moocore.read_datasets( ... StringIO(''' ... 4 2.5 ... 3 3 ... 2.5 3.5 ... ... 3 3 ... 2.5 3.5 ... ... 2 1''') ... ) >>> moocore.eafdiff(A1, A2) array([[ 1. , 2. , 2. ], [ 2. , 1. , -1. ], [ 2.5, 1. , 0. ], [ 2. , 2. , 1. ], [ 2. , 3. , 2. ], [ 3. , 2. , 2. ], [ 2.5, 3.5, 0. ], [ 3. , 3. , 0. ], [ 4. , 2.5, 1. ]]) >>> moocore.eafdiff(A1, A2, rectangles=True) array([[ 2. , 1. , 2.5, 2. , -1. ], [ 1. , 2. , 2. , inf, 2. ], [ 2.5, 1. , inf, 2. , 0. ], [ 2. , 2. , 3. , 3. , 1. ], [ 2. , 3.5, 2.5, inf, 2. ], [ 2. , 3. , 3. , 3.5, 2. ], [ 3. , 2.5, 4. , 3. , 2. ], [ 3. , 2. , inf, 2.5, 2. ], [ 4. , 2.5, inf, 3. , 1. ]])