Note
Go to the end to download the full example code.
Computing Multi-Objective Quality Metrics#
This is an example of computing various quality metrics on two datasets.
import numpy as np
import moocore
First, read the datasets.
spherical = moocore.get_dataset("spherical-250-10-3d.txt")
uniform = moocore.get_dataset("uniform-250-10-3d.txt")
spherical_objs = spherical[:, :-1]
spherical_sets = spherical[:, -1]
uniform_objs = uniform[:, :-1] / 10
uniform_sets = uniform[:, -1]
Create reference set and reference point.
ref_set = moocore.filter_dominated(np.vstack((spherical_objs, uniform_objs)))
ref_point = 1.1
Calculate metrics.
uniform_igd_plus = moocore.apply_within_sets(
uniform_objs, uniform_sets, moocore.igd_plus, ref=ref_set
)
spherical_igd_plus = moocore.apply_within_sets(
spherical_objs, spherical_sets, moocore.igd_plus, ref=ref_set
)
uniform_epsilon = moocore.apply_within_sets(
uniform_objs, uniform_sets, moocore.epsilon_mult, ref=ref_set
)
spherical_epsilon = moocore.apply_within_sets(
spherical_objs, spherical_sets, moocore.epsilon_mult, ref=ref_set
)
uniform_hypervolume = moocore.apply_within_sets(
uniform_objs, uniform_sets, moocore.hypervolume, ref=ref_point
)
spherical_hypervolume = moocore.apply_within_sets(
spherical_objs, spherical_sets, moocore.hypervolume, ref=ref_point
)
print(f"""
Uniform Spherical
------- ---------
Mean HV : {np.mean(uniform_hypervolume):.5f} {np.mean(spherical_hypervolume):.5f}
Mean IGD+: {np.mean(uniform_igd_plus):.5f} {np.mean(spherical_igd_plus):.5f}
Mean eps*: {np.mean(uniform_epsilon):.3f} {np.mean(spherical_epsilon):.3f}
""")
Uniform Spherical
------- ---------
Mean HV : 0.78689 0.73290
Mean IGD+: 0.12383 0.15745
Mean eps*: 623.278 225.916
Total running time of the script: (0 minutes 0.090 seconds)